# K6312 Information Mining & Analysis

Chen Zhenghua & Zhao Rui

## **Decision Tree**

#### What is Decision Tree

• Decision Tree: a decision support tool that uses a tree-like model/graph of decisions and their possible consequences.

Should I do exercise today?





- 1. Top-down approach
- 2. Divide and Conquer

## Terminology

- **Root Node:** represent entire population or sample, which will be further divided into multiple subsets.
- **Splitting**: a process of dividing a node into two or more sub-nodes.
- **Decision Node**: a sub-node that can be split into further sub-nodes.
- Leaf/Terminal Node: nodes do not split.
- **Branch/Sub-Tree**: a sub section of entire tree.
- **Pruning**: remove nodes (opposite of Splitting)
- **Parent and child Node**: a node which is divided into sub-nodes is called parent node of sub-nodes where sub-nodes are the child of parent node.



Note:- A is parent node of B and C.

Source:

https://medium.com/@rishabhjain\_22692/decision-trees-it-begins-here-93ff54ef134

# **Function Approximation**

#### **Function Approximation**

- Problem Setting:
  - Set of possible instances X (input space, feature space)
  - $\circ$  Unknown target function  $f:\mathbb{X} o\mathbb{Y}$
  - $\circ$  Set of function hypotheses  $H = \{h | h : \mathbb{X} o \mathbb{Y}\}$ (hypothesis space)
- Input
  - $\circ$  Training examples  $\{<{f x}^i,y^i>\}$  of unknown target function f
- Output
  - $\circ$  Hypothesis  $h\in H$  that best approximates target function f

#### For Supervised Learning

## How to have chicken rice in Can 2 ASAP

- Problem Setting:
  - Set of possible instances
    - Each instance will be the day of week. E.g. <monday>, <sun.>
  - Unknown target function
    - Function can be the route you take that make you arrive at Can 2 ASAP
  - Set of function hypotheses
    - Each hypothesis may be a combination of taking bus or walking along nanyang avenue. E.g. {monday: bus, the rest: walk}. It may have 2^7 possibilities.
- Output:
  - The most optimal strategy: maybe weekdays by bus, weekends by walk
- Input
  - Training examples e.g., <Mon. take bus, 10mins>,
     <Sun, take bus 50mins>, <Sun, walk, 20mins>, <Tues., walk, 25mins>....



## **Function Approximation-Decision Tree**

- Problem Setting:
  - $\circ$  Set of possible instances X
    - Each instance x in X is a feature vector. E.g., <humidity: low, wind: weak, outlook:rain, temp: hot>
  - $\circ$  Unknown target function  $f:\mathbb{X} o\mathbb{Y}$ 
    - A decision tree map x to y
  - $\circ$  Set of function hypotheses  $H = \{h|h: \mathbb{X} 
    ightarrow \mathbb{Y}\}$ 
    - Each hypothesis is a decision tree, which sorts x to leaf and assign its corresponding y
- Input
  - $\circ$  Training examples  $\{<\mathbf{x}^i,y^i>\}$  of unknown target function f
- Output
  - $\circ$  Hypothesis  $h\in H$  that best approximates target function f
    - The decision tree fit the data best

| Outlook       | Temperature | Humidity | Windy | Play |
|---------------|-------------|----------|-------|------|
| Sunny         | Hot         | High     | False | No   |
| Sunny         | Hot         | High     | True  | No   |
| Overcast      | Hot         | High     | False | Yes  |
| Rainy         | Mild        | High     | False | Yes  |
| Rainy         | Cool        | Normal   | False | Yes  |
| Rainy         | Cool        | Normal   | True  | No   |
| Overcast      | Cool        | Normal   | True  | Yes  |
| Sunny         | Mild        | High     | False | No   |
| Sunny         | Cool        | Normal   | False | Yes  |
| Rainy         | Mild        | Normal   | False | Yes  |
| Sunny Mild    |             | Normal   | True  | Yes  |
| Overcast Mild |             | High     | True  | Yes  |
| Overcast Hot  |             | Normal   | False | Yes  |
| Rainy Mild    |             | High     | True  | No   |



#### **Quick Questions**

- Suppose X = [x1, x2, x3, x4] is a boolean valued vector
  - How would you represent x1 AND x2 AND x4 using decision tree?
  - How would you represent x1 OR x3 using decision tree?
  - Is decision tree able to represent every boolean function over any number of boolean variables?

# Decision Tree: How to Build and Use

#### Can a "Good Tree" be automatically built?

- We can always come up with some decision tree for a dataset
  - Pick any feature not used above, brach on its values, recursively.
  - However starting with a random feature may lead to a large and complex tree.

• In general, we prefer short trees over larger and complex ones because a simple consistent hypothesis is more likely to be true

#### Toy Example: Play Tennis

| utlook Temperature Humi |      | Humidity | Windy | Play |  |
|-------------------------|------|----------|-------|------|--|
| Sunny                   | Hot  | High     | False | No   |  |
| Sunny                   | Hot  | High     | True  | No   |  |
| Overcast                | Hot  | High     | False | Yes  |  |
| Rainy                   | Mild | High     | False | Yes  |  |
| Rainy                   | Cool | Normal   | False | Yes  |  |
| Rainy                   | Cool | Normal   | True  | No   |  |
| vercast                 | Cool | Normal   | True  | Yes  |  |
| Sunny                   | Mild | High     | False | No   |  |
| Sunny                   | Cool | Normal   | False | Yes  |  |
| Rainy                   | Mild | Normal   | False | Yes  |  |
| Sunny                   | Mild | Normal   | True  | Yes  |  |
| vercast                 | Mild | High     | True  | Yes  |  |
| vercast                 | Hot  | Normal   | False | Yes  |  |
| Rainy                   | Mild | High     | True  | No   |  |

| Features/<br>Attributes |  |
|-------------------------|--|
| Label                   |  |

#### **Poor Decision Tree**



### Algorithm for Building Decision Tree

node=root

Main Loop:

- 1. Decide the "best" attribute or feature (Say A) for next node;
- 2. For each value of **A**, create a new descendant of node;
- 3. Partition training examples to leaf nodes;
- 4. **IF** training examples are perfectly classified, **THEN STOP**; **ELSE** iterate over new leaf nodes

#### How to Select "Optimal" Attribute ?

| Outlook  | Temperature | Humidity | Windy | Play |
|----------|-------------|----------|-------|------|
| Sunny    | Hot         | High     | False | No   |
| Sunny    | Hot         | High     | True  | No   |
| Overcast | Hot         | High     | False | Yes  |
| Rainy    | Mild        | High     | False | Yes  |
| Rainy    | Cool        | Normal   | False | Yes  |
| Rainy    | Cool        | Normal   | True  | No   |
| Overcast | Cool        | Normal   | True  | Yes  |
| Sunny    | Mild        | High     | False | No   |
| Sunny    | Cool        | Normal   | False | Yes  |
| Rainy    | Mild        | Normal   | False | Yes  |
| Sunny    | Mild        | Normal   | True  | Yes  |
| Overcast | Mild        | High     | True  | Yes  |
| Overcast | Hot         | Normal   | False | Yes  |
| Rainy    | Mild        | High     | True  | No   |

#### Learning Process

• Finding the smallest decision tree turns out to be intractable.

• However, there is a simple heuristics algorithm that does a good job of finding small trees.

• Inductive decision tree algorithm 3 (ID3)



• ID3 is a well-known decision tree algorithms that uses a top-down greedy search through the hypothesis space.

• ID3 was designed to handle large training sets with many attributes.

• ID3 tries to generate fairly simple trees, but is not guaranteed to produce the best one.

#### Which is the best attribute to split

- Imagine that we have examples for two classes P and N. How do we decide which attribute to split on?
- Let's first take a look at some characteristic of tests
  - Let S contain 20 occurrences of P and 20 of N.
  - Imagine a Boolean test that splits the data into two subsets S1 and S2.
- Best case: S1 = 20P and S2 = 20N
- Worst case: S1 = 10P, 10N and S2 = 10P, 10N
- Intermediate case: S1 = 17P, 1N and S2 = 3P, 19N

- Why is the third case better than the second?
  - This third case is less chaos and more pure

#### Search Heuristic in ID3

- Central choice in ID3: Which attribute to test at each node in the tree?
  - The attribute that is most useful for classifying examples.

• Define a statistical property, called information gain, measuring how well a given attribute separates the training examples according to their target classification.

• First define a measure commonly used in information theory, called **entropy**, to characterize the (im)-purity of an arbitrary collection of examples

## Entropy

• Entropy is the measure of the information in a set of examples.

$$Entropy = -\sum_{i=1}^{K} p_i log_2 p_i$$

- Where i={1,...,K}, K is the number of possible actions, pi is the proportion of each action i in the example set
- For example:  $Entropy([9*,5+,6-]) = -\frac{9}{20}log_2\frac{9}{20}$  $-\frac{5}{20}log_2\frac{5}{20} - \frac{6}{20}log_2\frac{6}{20}$
- High Entropy: more information
- Low Entropy: less information



#### Entropy for binary case

- *S* is a sample of training examples
  - P+ is the proportion of positive examples in S
  - P- is the proportion of negative examples in S

• Entropy measures the impurity of S



$$Entropy([9+,5-]) = -rac{9}{14}log_2(rac{9}{14}) - rac{5}{14}log_2(rac{5}{14}) = 0.94$$



#### **Information Gain**

• Entropy:

$$E(X) = -\sum_{i=1}^K p(X=X_i) log_2 p(X=X_i)$$

- Intuition: uncertainty of X, information contained in X, expected information bits required to represent X.
- Conditional Entropy

 $E(X|Y) = \sum_{i=1} p(Y = Y_i) E(X|Y = Y_i)$ 

- Intuition: given y, how much uncertainty remains in X
- Mutual Information (Information Gain)

$$I(X,Y)=E(X)-E(X|Y)=E(Y)-E(Y|X)$$

• Intuition: how much knowing Y reduces uncertainty about X, and vice versa.

#### **Information Gain Splitting**



| I | (X, | Y) |
|---|-----|----|
|   | · · |    |

| Outlook      | Temperature | Humidity | Windy | Play |
|--------------|-------------|----------|-------|------|
| Sunny        | Hot         | High     | False | No   |
| Sunny        | Hot         | High     | True  | No   |
| Overcast     | Hot         | High     | False | Yes  |
| Rainy        | Mild        | High     | False | Yes  |
| Rainy        | Cool        | Normal   | False | Yes  |
| Rainy        | Cool        | Normal   | True  | No   |
| Overcast     | Cool        | Normal   | True  | Yes  |
| Sunny        | Mild        | High     | False | No   |
| Sunny        | Cool        | Normal   | False | Yes  |
| Rainy        | Mild        | Normal   | False | Yes  |
| Sunny        | Mild        | Normal   | True  | Yes  |
| Overcast     | Mild        | High     | True  | Yes  |
| Overcast Hot |             | Normal   | False | Yes  |
| Rainy        | Mild        | High     | True  | No   |

#### Information Gain Splitting



I(X, Y)

| Outlook   | Temperature | Humidity | Windy | Play |  |
|-----------|-------------|----------|-------|------|--|
| Sunny Hot |             | High     | False | No   |  |
| Sunny     | Hot         | High     | True  | No   |  |
| Overcast  | Hot         | High     | False | Yes  |  |
| Rainy     | Mild        | High     | False | Yes  |  |
| Rainy     | Cool        | Normal   | False | Yes  |  |
| Rainy     | Cool        | Normal   | True  | No   |  |
| Overcast  | Cool        | Normal   | True  | Yes  |  |
| Sunny     | Mild        | High     | False | No   |  |
| Sunny     | Cool        | Normal   | False | Yes  |  |
| Rainy     | Mild        | Normal   | False | Yes  |  |
| Sunny     | Mild        | Normal   | True  | Yes  |  |
| Overcast  | Mild        | High     | True  | Yes  |  |
| Overcast  | Hot         | Normal   | False | Yes  |  |
| Rainy     | Mild        | High     | True  | No   |  |

#### Information Gain Splitting



#### **Outlook wins over Humidity**

| Outlook  | Temperature     | Humidity | Windy | Play |  |
|----------|-----------------|----------|-------|------|--|
| Sunny    | Hot             | High     | False | No   |  |
| Sunny    | Hot             | High     | True  | No   |  |
| Overcast | Hot             | High     | False | Yes  |  |
| Rainy    | Mild            | High     | False | Yes  |  |
| Rainy    | Cool            | Normal   | False | Yes  |  |
| Rainy    | Cool            | Normal   | True  | No   |  |
| Overcast | Cool            | Normal   | True  | Yes  |  |
| Sunny    | Mild            | High     | False | No   |  |
| Sunny    | Cool            | Normal   | False | Yes  |  |
| Rainy    | Mild            | Normal   | False | Yes  |  |
| Sunny    | Mild            | Normal   | True  | Yes  |  |
| Overcast | Mild            | High     | True  | Yes  |  |
| Overcast | cast Hot Normal |          | False | Yes  |  |
| Rainy    | Mild            | High     | True  | No   |  |

#### Exercise



Next attributes to split ?

| Outlook    | Temperature | Humidity     | Windy | Play |
|------------|-------------|--------------|-------|------|
| Sunny      | Hot         | High         | False | No   |
| Sunny      | Hot         | High         | True  | No   |
| Overcast   | Hot         | High         | False | Yes  |
| Rainy      | Mild        | High         | False | Yes  |
| Rainy      | Cool        | Normal       | False | Yes  |
| Rainy      | Cool        | Normal       | True  | No   |
| Overcast   | Cool        | Normal       | True  | Yes  |
| Sunny      | Mild        | High         | False | No   |
| Sunny      | Cool        | Normal       | False | Yes  |
| Rainy      | Mild        | Normal False |       | Yes  |
| Sunny      | Mild        | Normal       | True  | Yes  |
| Overcast   | Mild        | High         | True  | Yes  |
| Overcast   | Hot         | Normal       | False | Yes  |
| Rainy Mild |             | High         | True  | No   |

#### Prediction with Decision Tree



#### How about Continuous Attributes?

• Real-valued attributes can, in advance, be discretized into ranges, such as big, medium, small.

- Alternatively, for continuous attribute A, one can develop splitting nodes based on thresholds of the form A<c that partition the examples into those with A<c and those with A>=c.
  - The information gain of such splits are easily computed and compared to splits on discrete features in order to select the best split.

### **Continuous Value Attribute**

| 0         | 10   | 0        | 0         | stop |
|-----------|------|----------|-----------|------|
| 0         | 10   | 0.02     | 0         | stop |
| 0         | 14   | 0.04     | 0         | stop |
| 0         | 10   | 0        | 0         | stop |
| 94.721062 | 60   | 3.559097 | -0.213634 | stop |
| 13.798621 | 10   | 0.446895 | -0.068557 | walk |
| 0         | 10   | 0        | 0         | walk |
| 5.02672   | 10   | 0.201069 | 0         | walk |
| 29.51251  | 10   | 0.953268 | 0.046126  | walk |
| 18.448198 | 18   | 0.798536 | -0.040226 | walk |
| 93.197034 | 77.5 | 4.434993 | -0.378918 | walk |
| 63.604663 | 37   | 2.450164 | 0.035747  | walk |

#### Personal GPS tracking in 30 seconds window

- Defining a discrete attribute that partitions the continuous attribute value into a discrete set of intervals
  - Speeds in the sample: [3,0.5, 10, 4,0.3,0.1,1]
  - Speed < 3?:
    - **[**0.5, 0.3, 0, 2,1]
    - **[**3, 10, 4]

## Training Examples

| Day | Outlook  | Temp. | Humidity | Wind   | Play (Tennis) |
|-----|----------|-------|----------|--------|---------------|
| D1  | Sunny    | 85    | 85       | Weak   | No            |
| D2  | Sunny    | 80    | 90       | Strong | No            |
| D3  | Overcast | 83    | 86       | Weak   | Yes           |
| D4  | Rain     | 70    | 96       | Weak   | Yes           |
| D5  | Rain     | 68    | 80       | Weak   | Yes           |
| D6  | Rain     | 65    | 70       | Strong | No            |
| D7  | Overcast | 64    | 65       | Strong | Yes           |
| D8  | Sunny    | 72    | 95       | Weak   | No            |
| D9  | Sunny    | 69    | 70       | Weak   | Yes           |
| D10 | Rain     | 75    | 80       | Weak   | Yes           |
| D11 | Sunny    | 75    | 70       | Strong | Yes           |
| D12 | Overcast | 72    | 90       | Strong | Yes           |
| D13 | Overcast | 81    | 75       | Weak   | Yes           |
| D14 | Rain     | 71    | 91       | Strong | No            |

#### For Continuous Attributes

• The single threshold with the highest gain for a set of data can be found by examining the following choices.

```
for (each continuous feature A){
   Sort the examples according to their value for A;
   for (each ordered pair, X<sub>i</sub>, X<sub>i+1</sub>, in the sorted list)
      if (the category of X<sub>i</sub> and X<sub>i+1</sub> are different)
      find the midpoint of X<sub>i</sub> and X<sub>i+1</sub> denoted as c<sub>i</sub> to
      define threshold A < c<sub>i</sub>
```

}

| Temp                                                    | 64  | 65 | 68 | 69  | 70 | 71 | 72 | 72 | 75 | 75  | 80  | 81 | 83  | 85 |
|---------------------------------------------------------|-----|----|----|-----|----|----|----|----|----|-----|-----|----|-----|----|
| Class                                                   | + 1 |    | 4  | + / | +  | -  | -  | +  | +  | + 1 | - 1 | +  | + / | -  |
| Thresholds for Temp 64.5, 66.5, 70.5, 72, 77.5 80.5, 84 |     |    |    |     |    |    |    |    |    |     |     |    |     |    |

#### **Attributes with Many Values**

- Information Gain will bias toward the attribute with many values
- For example, using day as the attribute, the data will be perfectly splitted into subsets of size 1.
- However, it won't work for new data.
- Use GainRatio instead of information gain as criteria:



### **Other Criterions**

- Gini Impurity (corresponding to entropy)
  - $\circ \quad \text{Suppose we} \quad$ 
    - Randomly pick a datapoint in our dataset, then
    - Randomly classify it according to the class distribution in the dataset.
    - The probability we classify the data point incorrectly is Gini Impurity

## **Decision Tree: Regression**

#### **Decision Tree Regression**

- Everything learned from the decision tree classification is the same except:
  - Use variance reduction as splitting criterion
  - Use aggregate statistic as prediction output

**T**arget

|           |      | Talyel           |                      |      |  |
|-----------|------|------------------|----------------------|------|--|
|           |      | Average<br>speed | Average acceleration |      |  |
| 0         | 10   | 0                | 0                    | stop |  |
| 0         | 10   | 0.02             | 0                    | stop |  |
| 0         | 14   | 0.04             | 0                    | stop |  |
| 0         | 10   | 0                | 0                    | stop |  |
| 94.721062 | 60   | 3.559097         | -0.213634            | stop |  |
| 13.798621 | 10   | 0.446895         | -0.068557            | walk |  |
| 0         | 10   | 0                | 0                    | walk |  |
| 5.02672   | 10   | 0.201069         | 0                    | walk |  |
| 29.51251  | 10   | 0.953268         | 0.046126             | walk |  |
| 18.448198 | 18   | 0.798536         | -0.040226            | walk |  |
| 93.197034 | 77.5 | 4.434993         | -0.378918            | walk |  |
| 63.604663 | 37   | 2.450164         | 0.035747             | walk |  |

#### Example



#### **Problem of Decision Tree Regression**

[distance, accuracy, acceleration, mode] -> speed

#### Use average value as the stat used



### Cannot predict values outside the historically observed range

| 0             | 10   | 0        | 0         | stop |
|---------------|------|----------|-----------|------|
| 0             | 10   | 0.02     | 0         | stop |
| 0             | 14   | 0.04     | 0         | stop |
| 0             | 10   | 0        | 0         | stop |
| 94.72106<br>2 | 60   | 3.559097 | -0.213634 | stop |
| 13.79862<br>1 | 10   | 0.446895 | -0.068557 | walk |
| 0             | 10   | 0        | 0         | walk |
| 5.02672       | 10   | 0.201069 | 0         | walk |
| 29.51251      | 10   | 0.953268 | 0.046126  | walk |
| 18.44819<br>8 | 18   | 0.798536 | -0.040226 | walk |
| 93.19703<br>4 | 77.5 | 4.434993 | -0.378918 | walk |
| 63.60466<br>3 | 37   | 2.450164 | 0.035747  | walk |

#### **Decision Tree Learning**

#### • Pros

- Easy to understand: decision tree output is very easy to understand
- Data exploration: feature selection
- Less data cleaning required: not influenced by scale and missing values to a fair degree
- Data type is not a constraint: handle both numerical and categorical variables
- Non parametric method: no assumptions about the space distribution and the classifier structure
- In nature, can handle multiclass directly
- Cons
  - Overfitting: overfitting is one of the most practical difficulty for decision tree models
  - Not ideal for continuous variables: while working with continuous numerical variables, decision tree lost information when it categorizes variables in different categories.

## **Decision Tree: Overfitting**

### Generalization

- In ML, a model is used to fit the data
- Once trained, the model is applied upon new data
- Generalization is the prediction capability of the model on live/new data

#### Which model is better?





**SPAM** VS Not SPAM

## **Model Complexity**

- Complex model easily overfits the training data
- Then, the trained model is unable to generalize on testing data
- overfitting vs underitting
  - overfitting: small training error but large testing error
  - underfitting: large training and testing errors

#### Model Complexity × ×× х х X' Happiness х х Wealth Wealth Wealth Prediction Error for New Data Model Prediction Error Optimism Training Error Ó c

Model Complexity

source: stackoverflow

#### **Overfitting for Decision Tree**

- Is it a good idea to grow the full tree all the time?
  - Suppose we add one noisy training sample: [sunny, hot, normal, true, no]
  - What effect on earlier tree?
- There may exist multiple trees that perform exactly the same, then which one should we select?
  - General Principle: prefer the simplest hypothesis that fits the data

#### How to Avoid Overfitting I

- Stop growing the tree given stopping criterions
  - Minimum samples for a node split
  - Minimum samples for a terminal node (leaf)
  - Maximum depth of tree (vertical depth)



source:<u>https://www.analytic</u> svidhya.com/blog/2016/04/c omplete-tutorial-tree-basedmodeling-scratch-in-python/

#### How to Avoid Overfitting II

- Grow a "full" tree, and then to perform post-pruning
  - $\circ$   $\,$  Split data into training and validation set
  - Build a full tree that classify training data
  - Do until further pruning is harmful, greedily remove the one that most improves validation set accuracy.

