
Ensemble Machine
Learning

What is Machine Learning
Ensembles?

Intuition of Ensemble Learning
Three kids can defeat a master

http://www.youtube.com/watch?v=dhvmVScjrzE

Machine Learning Ensembles
● Techniques that generate a group of base learner when

combined have higher accuracy

● Strong v.s. Weak learner

● Stable (kNN) v.s. Unstable (decision trees, neural networks)
machine learning algorithms

Why Ensemble?

● Reduce Bias

● Reduce Variance

● Prediction Error:
= Bias ^2
 + Variance
 + Irreducible Error

Bias-Variance
● Bias: the difference between the average prediction of our model and the

correct value which we are trying to predict

● Variance: the variability of model prediction for a given data point or a value
which tells us spread of our data

Reduce Bias

● Assume a test set of 10 samples and k (assume k is odd) independent
binary classifiers, where each classifier has p accuracy.

Combining these
k classifiers,
using majority
voting

The final Acc. will be the prob that
majority of classifiers are correct.

What is the probability that k choose i classifiers whose predictions are wrong
and the rest k-i models’ outputs are correct.

Reduce Bias

Reduce Bias

Reduce Variance

● Suppose we have n independent models: M1, M2, …. Mn with the same
variance σ ^2. The ensemble M* constructed from these models using averaging
will have the variance as follows:

Common Ensemble
Techniques

Ensemble Learning
● Bagging: reduce the variance in a model

○ Random Forest

● Boosting: reduce the bias in a model
○ Ada-Boost, XGBoost, Gradient Boosted Decision Trees

● Stacking: increase the prediction accuracy of a model
○ Mlxtend library

● Cascading: the class of models is very accurate
○ Suitable for the cases you can not afford to make a mistake

http://rasbt.github.io/mlxtend/

Bagging

Bagging
● Bootstrap aggregation

● Train m classifier from m bootstrap
replication

● Combine outputs by voting/averaging

● Decreases error by decreasing the
variance

● Random Forest (Randomly select
features)

● ExtraTrees (Randomized top-down
split)

Bootstrapping

Base Learner

Source: Towards
Data Science

Majority Voting

● Equal: the difference
between the average

● Weighted: best model
get more weight in a vote

Average
● Take the average of several models’ output

● Average multiple green lines -> black line (reduce overfit)

Random Forests Source: Towards
Data Science

Boosting

Boosting
● Training samples are given weights (initially

same weight)

● At each iteration, a new hypothesis is learned.

● Training samples are reweighted to focus the
model on samples that the most recently
learned classifier got wrong.

● Combine output by voting

● Gradient Boosting, Adaboost, XGBoost,
LightGBM

Boosting Source: Towards
Data Science

Stacking

Stacking
● Core idea: use a pool of base classifiers, then using another classifier

(stacker) to combine their prediction for the final decision

Stacking

Data
sample

Raw Features

Random
Forest

SVM

Ridge
Classifiers

New Features

Data
sample

L2-Classifier

Labels

Can be predicted
labels or
probabilistics

Decision Regions: Demo Case

Cascading

Cascading
● Literally, cascading means “a process whereby something, typically

information or knowledge, is successively passed on”

● In ML context, we build a sequence of models. The informations are the
model outputs.

● It is suitable for the scenarios that requires a very high accuracy.
○ For example, credit card fraud detection

One of Human-Centered AI Systems
● Fraud detection: binary classification

○ The accuracy of fraud case should be very high. It means that we should not miss any
fraud transactions that may cause losses

○ Label 0: Normal; Label 1: Fraud

Model 1 Model 2 Model 3

If p(y=0) > 0.99 If p(y=0) > 0.99 If p(y=0) > 0.99

If p(y=0) < 0.99 If p(y=0) < 0.99 If p(y=0) < 0.99

Not
Fraud

Not
Fraud

Not
Fraud

Physically call the
customer to verify

Transactions

Training
● Training data denoted as DT. It contains data samples with labels 0 and 1

● Train model 1 on the whole DT. Then, we apply the model 1 on the whole
DT. DT1 dataset will be the collections of all points with predicted labels of
0.

● Train model 2 on the dataset difference DT - DT1. Then, apply the model 2
on the whole DT-DT1. DT2 dataset will be the collections of all points with
predicted labels of 0.

● Repeat the process for model 3, …..

The key: the subsequent model will only train over the datasets that the previous models are not
confident.

Training

Model 1 Model 2 Model 3

y_predict=0 y_predict=0 y_predict=0

Not sure y_predict=0

Not
Fraud

Not
Fraud

Not
Fraud

DT
Training data

Not sure y_predict=0

DT1 DT2 DT3

DT - DT1
Training data
for model 2

DT - DT1-DT2
Training data for
model 3

From Competition to Industry

Netfilx Competition

1 The winning solution is
a final combination of
107 algorithms;

2 Are not fully
implemented.

Some possible pitfalls
● Exponentially increasing training times and computational requirements

● Increase demand on infrastructure to maintain and update these models.

● Greater chance of data leakage between models or stages in the whole
training.

In a nutshell
● No Free Lunch Theorem: There is no one algorithm that is always the most

accurate.

● Our efforts should focus on obtaining base models which make different kinds
of errors, rather than obtaining highly accurate base models

● What we need to do is to build weak learners that are at least more accurate
than random guessing

● Keep trying (experimenting, tuning, etc.) !

