
Ensemble Machine 
Learning



What is Machine Learning 
Ensembles?



Intuition of Ensemble Learning
Three kids can defeat a master

http://www.youtube.com/watch?v=dhvmVScjrzE




Machine Learning Ensembles
● Techniques that generate a group of base learner when 

combined have higher accuracy

● Strong v.s. Weak learner 

● Stable (kNN) v.s. Unstable (decision trees, neural networks) 
machine learning algorithms



Why Ensemble?

● Reduce Bias

● Reduce Variance 

● Prediction Error:
= Bias ^2 
   + Variance 
   + Irreducible Error



Bias-Variance
● Bias: the difference between the average prediction of our model and the 

correct value which we are trying to predict

● Variance: the variability of model prediction for a given data point or a value 
which tells us spread of our data



Reduce Bias

● Assume a test set of 10 samples and k (assume k is odd) independent 
binary classifiers, where each classifier has p accuracy. 

Combining these 
k classifiers, 
using majority 
voting

The final Acc. will be the prob that 
majority of classifiers are correct.

What is the probability that k choose i classifiers whose predictions are wrong 
and the rest k-i models’ outputs are correct.



Reduce Bias



Reduce Bias



Reduce Variance

● Suppose we have n independent models: M1, M2, …. Mn with the same 
variance σ ^2. The ensemble M* constructed from these models using averaging 
will have the variance as follows:



Common Ensemble 
Techniques



Ensemble Learning
● Bagging: reduce the variance in a model

○ Random Forest

● Boosting: reduce the bias in a model
○ Ada-Boost, XGBoost, Gradient Boosted Decision Trees

● Stacking: increase the prediction accuracy of a model
○ Mlxtend library

● Cascading: the class of models is very accurate
○ Suitable for the cases you can not afford to make a mistake

http://rasbt.github.io/mlxtend/


Bagging



Bagging
● Bootstrap aggregation

● Train m classifier from m bootstrap 
replication

● Combine outputs by voting/averaging

● Decreases error by decreasing the 
variance

● Random Forest (Randomly select 
features)

● ExtraTrees (Randomized top-down 
split)



Bootstrapping



Base Learner

Source: Towards 
Data Science



Majority Voting

● Equal: the difference 
between the average 

● Weighted: best model 
get more weight in a vote



Average
● Take the average of several models’ output

● Average multiple green lines -> black line (reduce overfit)



Random Forests Source: Towards 
Data Science



Boosting



Boosting
● Training samples are given weights (initially 

same weight)

● At each iteration, a new hypothesis is learned.

● Training samples are reweighted to focus the 
model on samples that the most recently 
learned classifier got wrong.

● Combine output by voting

● Gradient Boosting, Adaboost, XGBoost, 
LightGBM



Boosting Source: Towards 
Data Science



Stacking



Stacking
● Core idea: use a pool of base classifiers, then using another classifier 

(stacker) to combine their prediction for the final decision



Stacking

Data 
sample

Raw Features

Random 
Forest

SVM

Ridge 
Classifiers

New Features

Data 
sample

L2-Classifier

Labels

Can be predicted 
labels or 
probabilistics



Decision Regions: Demo Case



Cascading



Cascading
● Literally, cascading means “a process whereby something, typically 

information or knowledge, is successively passed on”

● In ML context, we build a sequence of models. The informations are the 
model outputs.

● It is suitable for the scenarios that requires a very high accuracy.
○ For example, credit card fraud detection



One of Human-Centered AI Systems
● Fraud detection: binary classification

○ The accuracy of fraud case should be very high. It means that we should not miss any 
fraud transactions that may cause losses

○ Label 0: Normal; Label 1: Fraud

Model 1 Model 2 Model 3

If p(y=0) > 0.99 If p(y=0) > 0.99 If p(y=0) > 0.99

If p(y=0) < 0.99 If p(y=0) < 0.99 If p(y=0) < 0.99

Not 
Fraud

Not 
Fraud

Not 
Fraud

Physically call the 
customer to verify

Transactions



Training
● Training data denoted as DT. It contains data samples with labels 0 and 1

● Train model 1 on the whole DT. Then, we apply the model 1 on the whole 
DT. DT1 dataset will be the collections of all points with predicted labels of 
0.

● Train model 2 on the dataset difference DT - DT1. Then, apply the model 2 
on the whole DT-DT1. DT2 dataset will be the collections of all points with 
predicted labels of 0.

● Repeat the process for model 3, …..

The key: the subsequent model will only train over the datasets that the previous models are not 
confident.



Training

Model 1 Model 2 Model 3

y_predict=0 y_predict=0 y_predict=0

Not sure y_predict=0

Not 
Fraud

Not 
Fraud

Not 
Fraud

DT
Training data

Not sure y_predict=0

DT1 DT2 DT3

DT - DT1
Training data 
for model 2

DT - DT1-DT2
Training data for 
model 3



From Competition to Industry



Netfilx Competition

1 The winning solution is 
a final combination of 
107 algorithms;

2 Are not fully 
implemented.



Some possible pitfalls
● Exponentially increasing training times and computational requirements

● Increase demand on infrastructure to maintain and update these models.

● Greater chance of data leakage between models or stages in the whole 
training. 



In a nutshell
● No Free Lunch Theorem: There is no one algorithm that is always the most 

accurate.

● Our efforts should focus on obtaining base models which make different kinds 
of errors, rather than obtaining highly accurate base models

● What we need to do is to build weak learners that are at least more accurate 
than random guessing

● Keep trying (experimenting, tuning, etc.) !


