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Deep Learning/Deep Neural
Networks



Neural Network Representation
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Shallow vs Deep

Simple Neural Network Deep Learning Neural Network
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End-to-End Learning
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Representation Learning in DL
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Representation Matters

Cartesian coordinates Polar coordinates
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Task: Draw a line to separate the green triangles and blue circles.




We want to project the data into the Nnew feature/vector
space that data is linearly separated



“TriCk” |n Deep Learnlng Low-dim, Original Space
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Why Deep Learning

Deep learning
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Amount of data
From Andrew Ng




Deep Learning

e Deep learning is suitable for big data
e Deep learning is able to address unstructured data, which can learn

representations from these unstructured data.



Structured

e Structured: Table (Matrix) or Tensor
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Unstructured

e The original data can not be stored in an “table”
e More abstract, more fuzzy, and more high-dimensionality
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This module provides students a deep overview of various advanced
machine learning techniques applied to business analytics tasks. The focus
of this course will be the key and intuitive idea behind machine learning
models and hands-on examples instead of theoretical analysis. The
tentative topics include machine learning pipeline, unsupervised learning,
structure learning, Bayesian learning, deep learning and generative models.
The programming languages used will be Python.




Deep Learning

e Deep learning is a subfield of machine learning

e Most machine learning methods work well because of high-quality feature
engineering/representation learning.

e Deep learning is an end-to-end structure, which supports automatic
representation learning

e Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc



Applications of DL



Deep Learning for Speech

The first real-world tasks addressed by deep learning is speech recognition
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Recurrent Neural Network for Sequential Data
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Deep Learning for Computer Vision

e Computer vision may be the most well-known breakthrough of DL.

e |ImageNet Classification with Deep Convolutional Neural Networks.




ImageNet Scoreboard
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Convolutional Neural Network For Image

7 F’ pbifd
l =
| >0
o
l | AI_l -0 k’ Psunset
=)
B, — = A |o ~
° No
o ] o No k’ Paog
w £ o °
= [+} o
< : > P
2 : (4] (<]
convolution + max pooling vec | o t
nonlinearity o
I | £ .1
L J
convolution + pooling layers fully connected layers  Nx binary classification

Perform a ML task (like
classification based on the
vectorized data)

Extracting useful
features of data



https://www.youtube.com/watch?v=FwFduRA L6Q



http://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q

Deep Learning For Data Generation

Given training data, generate new data samples from same distribution

Examples of Photorealistic GAN-Generated Faces.



Generative Models

e Given training data, generate new samples from same distribution

Training data ~ Paata(X) Generated samples ~ Prmocel(X)

e \Want to learn pmee(X) similar to poaa(X)

e Address density estimation, a core problem in ? learning



Source Video
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http://www.youtube.com/watch?v=PCBTZh41Ris

GAN progress on face generation from lan Goodfellow



DL/NN is not New
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Why is Deep Learning Powerful Now?

e Feature engineering require high-level expert knowledge, which are easily
over-specified and incomplete.

e Large amounts of training data

e Modern multi-core CPUs/GPUs/TPUs

e Better deep learning ‘tricks’ such as regularization, optimization, transfer

learning etc.



When DL may not Work



You need to
get off your
non-motor
vehicle when u
pass the
pedestrian
crossing.




The Challenge of Deep Learning

e Ask the right question and know what the answer means:

Image classification is not scene understanding.

e Select, collect, and organize the right data to train on:




Efficient Teaching/Efficient Learning

e Humans can learn from few examples

e DL/machine require thousands/millions of examples

o Data augmentation




Limitations

e DL always requires a large amount of annotated data

14 million Pre-training, Transfer Learning, Data
Augmentation

e Generalization capablllty IS Iow e.g. the model that perform well on

benchmarked datasets fail badly on real world images

e Easily got attacked by random, tiny noise

e How to explain such huge black box



Attack Machine Learning
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Attack Machine Learning

These stickers made an _ Speed limit 45
artificial-intelligence

Adversarial Examples system read this stop
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DNNs see as familiar
objects.
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Three points behind Successful ML Application

e Deep algorithms, i.e., deep learning

Zhihua ZHOU

e Strong supervision information (data with high quality labels)

e Stable learning environment

Limitations of DL



Key Takeaways

e Neural Network is: 1 linear transformation 2 non-linear activation

e Gradient Descent plus Back-Propagation is used to find the model parameters

of neural networks
e Deep learning: neural network with a deep structure (many layers)

e Deep learning is the method which tries to learn features by the model itself

without human efforts



